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Abstract

This paper concerns the form of the free energy function in coupled thermo-mechanical problems with isotropic
damage, particularly where damage accrues through both mechanical and thermal strains, and when the material is
exposed to elevated temperatures. We show that with the normal assumption of a constant speci®c heat coe�cient,

mechanical dissipation is negative and so the second law of thermodynamics is violated. This is true even for a
general isotropic damage model that allows independent damage on the Young's modulus and the bulk modulus.
Our approach is to make speci®c heat damage dependent, and under these conditions, we show positive dissipation

for a range of problems; for the case of concrete, at least, there is material evidence supporting this model. For
elevated temperatures, we use the logarithmic form of thermal energy, again showing positive dissipation.
Comparisons between the forms show a notable di�erence in the energy transformed to heat, which is signi®cant

when reintroduced into the computations. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The governing equations of (linearised) coupled thermo-elasticity are obtained from a quadratic free
energy function, written in the form:

c � 1

2
eee:E:eeeÿ Wm:eeeÿ 1
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c
W2

y0
�1�
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where c is the Helmholtz free energy, sss and eee are the local stress and strain tensors, W and y0 are the
relative temperature and reference temperature, respectively, and m is the thermo-elastic coupling tensor.
Finally, c is the speci®c heat capacity, assumed to be constant and independent of strain (or stress) and
temperature, which is de®ned by:

c � ÿy0 @
2c

@y2
�2�

In fact, the tangent elasticity is obtained as the second derivative of c,

E � @ 2c
@eee @eee

�3�

and so Eq. (1) can be recovered by integrating Eq. (3) twice with respect to strain and introducing Eq.
(2).

The constitutive relations for stress, sss, and entropy, Z, in in®nitesimal thermo-elasticity are given by:

sss � @c
@eee
� E:eeeÿ Wm

Z � ÿ@c
@y
� m:eee� c

W
y0

�4�

In this article, we are concerned with the free energy function for thermo-elasticity in the presence of
damage at (possibly) very high and transient temperatures. For the analysis of concrete under stress and
elevated temperatures in the range y � 25±8008C, the authors have adapted Mazars' scalar damage
model (Mazars and Pijaudier-Cabot, 1989) to include a temperature dependence. That is, both
mechanical and thermal damage are included, based on the relevant eigenstrains in the material. That
damage model assumed a free energy function given by:

c � 1

2
eee:E�d, g�:eeeÿ Wm�d, g�:eeeÿ 1

2
c
W2

y0
�5�

where d is the stress induced (mechanical) damage parameter and g is the thermal damage parameter;
the former is given in strain dependent functional form as in Mazars and Pijaudier-Cabot (1989),
extended to include temperature reliance (Baker and Stabler, 1998), and the latter is given in a
functional form determined from uniaxial test data. For completeness, we give the details of our model
in Section 2, but the discussion focuses on the more fundamental thermodynamic framework.

We should also record that given a set of micro-structural damage variables, D � �d, g�, the internal
mechanical dissipation in the material is given by:

fmech � ÿ
@c
@D

: ÇD � ÿ
�
@c
@d

_d� @c
@g

_g

�
�6�

and the dissipation due to heat conduction is given by the standard relation:

fcon � ÿ
1

y
ry:q �7�

where q is the heat ¯ux tensor. We remark that this latter is just a condition which is automatically
satis®ed by the use of Fourier's Law of heat conduction.
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The problem we address in this paper is that in using a free energy like Eq. (5), where elastic modulus
reduces with temperature, it can be shown that the mechanical dissipation in Eq. (6) can be easily
negative, and this, of course, entirely violates the second law of thermodynamics. Section 3 demonstrates
the problem in both steady state and transient examples of heat conduction, without mechanical
damage. We then generalise the isotropic damage model to include thermal damage parameters for
elastic modulus and Poisson's ratio, but retain the original constant speci®c heat coe�cient. The reason
is that the di�erential e�ects might permit su�cient ¯exibility in the model to guarantee an overall
positive dissipation even if mechanical dissipation associated with one of the damage parameters became
negative. However, we again show analytically in a steady state problem that dissipation is negative,
whatever is the relationship between the two parameters.

Our solution is to propose a damage dependent speci®c heat coe�cient, which we show analytically
and numerically to give positive mechanical dissipation in the same problems. The coe�cient cannot be
temperature dependent as the basic relationship between speci®c heat and free energy would be invalid.
The experimental evidence suggests that speci®c heat in concrete increases with temperature (Schneider,
1988). However, in a damage model that adopts an e�ective continuum concept, it can be argued that
the variation of speci®c heat is re¯ected through the corresponding damage parameters.

The quadratic form of thermal energy in Eq. (5) corresponds to the restriction to low temperatures.
We extend the variable speci®c heat argument to a logarithmic form appropriate for elevated
temperatures, and again show that dissipation is positive. In comparing the two forms, it is shown that
the temperature pro®le in a specimen is virtually the same, but that the entropy and dissipation vary
signi®cantly; this latter is important in calculating and using the mechanical energy transformed to heat.

For completeness, we show the discrete form of the thermal evolution equations for a ®nite element
code in Appendix A. While full details of suitable integration schemes are available for thermo-elasticity
(Armero and Simo, 1992), thermo-plasticity (Simo and Miehe, 1992) and thermo-damage (Stabler and
Baker, 2000), here we develop the algorithm to show the e�ect that the damage dependence of speci®c
heat has on the discrete equations.

2. Isotropic thermo-damage model

The thermo-damage model developed in the current research project is a phenomenological model
that considers concrete as a homogeneous material. The principal assumptions are that the material
remains isotropic and that damage a�ects the Young's modulus and the bulk modulus equally i.e.
Poisson's ratio is not a�ected by damage. Two internal variables are used to describe the damage in the
material: a mechanically induced damage component d, and a thermally induced damage component g.

From the phenomenological point of view, two damage variables are used because there are di�erent
processes through which damage occurs. Mechanical damage represents damage that occurs when an
external force system or a non-linear temperature pro®le induces stresses in the material. Thermal
damage represents damage that occurs during thermal expansion of the material. Experimentally, it has
been observed that a tensile strain of 1000 me resulting from an applied tensile load will cause almost
total loss of material sti�ness i.e. d11 (BazÏ ant and Pijaudier-Cabot, 1989). The same strain, when
resulting from a temperature increase of approximately 808C, results in only a 15% reduction in the
sti�ness of the material (Schneider, 1988).

Eq. (8) gives the reduction of Young's modulus which can be used to generate the sti�ness and
coupling tensors:

E � �1ÿ d��1ÿ g�E0 �8�
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In distinguishing between mechanical and thermal damage, it is necessary to decompose the strain
tensor into the stress related part and the free thermal part. For a given temperature increase, the
increase in the free thermal strain represents the thermal expansion in the stress free state. The
relationship between the total strain, the stress related strain and the free thermal strain is given by:

eeestress � eeeÿ eeefree � eeeÿ bW1 �9�
In the above equation, b represents the coe�cient of thermal expansion and W represents the
temperature increase.

2.1. Model for mechanical damage

The mathematical model used to describe the mechanical damage is an extension of the non-local
version of Mazars' scalar damage model. The evolution of damage is controlled by the de®nition of a
damage surface which can be written as:

fd � �eÿ k�d, y� �10�
In the above equation, �e is the non-local equivalent strain and is calculated from the stress related
strain. The symbol k�d, y� represents the hardening±softening parameter and controls the size of the
damage surface. Initially, the size of the damage surface is given by a threshold strain k0�y�: The
temperature dependence implies that the size of the threshold damage surface expands with increasing
temperature. Once damage has occurred, k takes the maximum value of either the temperature
dependent threshold strain or the equivalent strain reached during the previous loading history.

The non-local equivalent strain is calculated from the weighted average of the local equivalent strain
taken over a region about the point considered. This paper uses the Mazars' de®nition for the local
equivalent strain which, for the thermo-damage model, is de®ned as follows:

~e �
���������������������������������������������X3
i�1

� jestress
i j � estress

i

2

�2
vuut �11�

where estress
i refers to the principal values of the stress related strains. Note that it is also possible to use

other de®nitions of equivalent strains, such as the modi®ed von Mises de®nition (de Vree et al., 1995;
Peerlings et al., 1998).

The non-local equivalent strain is calculated by integrating the local equivalent strain over a region
about the point being considered. This is done using the following equations:

�e � 1

Vr

�
O
C�xÿ s�~e dO �12�

Vr �
�
O
C�xÿ s� dO �13�

where O is the volume of the structure. The weighting function C�xÿ s� is de®ned by the following
function:

C�xÿ s� � exp

 
ÿ 4kxÿ sk2

l 2c

!
�14�
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where lc is the internal length. The representative region over which �e is calculated is taken as a circle of
radius 1:2lc about point s: Outside this region, the value of the weighting function is taken to be zero.

The growth of damage is governed by a set of ¯ow rules. For an integrated damage model, these ¯ow
rules can be written as: d � d��e, y� if fd � 0 and _fd � 0, else _d � 0: In this model, the damage parameter
d is taken as the weighted average of the damage function for uniaxial tension dt, and the damage
function for uniaxial compression dc: This is given by

d � atdt � acdc �15�
When the stress state is in biaxial compression, the weighting functions are given by ac � 1 and at � 0;
and when the stress state is in biaxial tension, the weighting functions are given by ac � 0 and at � 1:
For the remaining case where one principal stress is tensile and the other is compressive, the weighting
functions are calculated from the following equations:

ac � ÿn
�$ ÿ n� and at � $

�$ ÿ n� �16�

In the above equations, $ � sj=si and represents the ratio of the tensile principal stress sj to the
compressive principal stress si: This de®nition for the weighting function allows the use of both the
Mazars' and the modi®ed von Mises de®nition of the equivalent strain.

The uniaxial damage functions take the exponential form proposed by Mazars' and are written as:

di � 1ÿ �1ÿ Ai �k0�y�
�e

ÿ Ai

e

�
BiF�y��Åeÿk0�y��

� where i � c or t �17�

In the above equations, Ac, At, Bc and Bt are material damage parameters. A temperature dependence
has been introduced via the function F�y� and the thermal dependence of the threshold strain k0�y�: The
function F�y� controls the decay of the peak stress with temperature and depends on the formulation of
the thermal damage function which is given below.

2.2. Model for thermal damage

The thermal damage parameter g represents damage due to the di�erential thermal expansion of the
constituents of the concrete and the thermal damage in the cement paste. Both of these damage
mechanisms are functions of the temperature, and therefore, the thermal damage can be considered as a
function of temperature. The growth of thermal damage is controlled by a one-dimensional thermal
damage surface which is given by:

fg � yÿ �k�g, y� �18�
where y is the thermodynamic temperature and �k�g, y� represents a hardening parameter which controls
the size of the damage surface. The initial size of the damage surface is given by the initial temperature
of the system and the damage surface expands as thermal damage occurs with increasing temperature.
The condition controlling the evolution of thermal damage can be written as: g � g�y� if fg � 0 and
_fg � 0, else _g � 0:
In this paper, the following expression has been used for the thermal damage function:

g � 1ÿ �Z1 ÿ Z2y�F�y� �19�
where the function F�y� is the same function used in Eq. (17) and is given by
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F�y� � Z3

�y� Z4� �20�

This model for the thermal damage requires four damage parameters Z1±Z4. These parameters were
determined by considering some of the experimental data for concrete tested in uniaxial compression at
elevated temperatures. Values for these damage parameters, as well as the other material parameters
required for the numerical examples, are given in Table 1 and 2.

3. The classical free energy function

The purpose of this section is to identify the problem associated with using an isotropic damage
model in conjunction with the classical free energy function given by Eq. (5). This will be done both
analytically and numerically. We point out that the analytical investigation is independent of the speci®c
details of the thermo-damage model.

3.1. Negative dissipation: the steady state case

Consider ®rst a sample in which the temperature is raised uniformly throughout the material by an
amount W: Because the temperature pro®le is uniform, the strain throughout the sample will be uniform
and given by eee � bW1: Consequently, the sample will remain stress free and no mechanical damage will
occur. Using E0 and m0 to represent the initial values of the elasticity and coupling tensors, the free
energy function reduces to:

c � �1ÿ g�1
2
eee:E0:eeeÿ �1ÿ g�Wm0:eeeÿ 1

2
c
W2

y0
�21�

and so the thermodynamic force A becomes:

A � ÿ@c
@g
� 1

2
eee:E0:eeeÿ Wm0:eee �22�

Table 2

Material properties used in the numerical examples

Young's modulus

(MPa)

Poisson's ratio Density

(kg/m3)

Coe�cient thermal expansion

(8Cÿ1)
Speci®c heat

(J/m3 8C)
Conduction coe�cient

(J/s m 8C)

31 0.2 2450 12� 10ÿ6 2.06� 106 3.0

Table 1

Damage parameters used in the thermo-damage model

Ac Bc At Bt Z1 Z2 (8C
ÿ1) Z3 (8C) Z4 (8C)

1.4 1850 0.95 5300 1.296 992� 10ÿ6 312.5 14.5
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or

A � eee:

�
1

2
E0:eeeÿ Wm0

�
�23�

The stress free condition requires that

sss � �1ÿ g��E0:eeeÿ Wm0 � � 0 �24�
which implies that the thermodynamic force must be negative.

In fact, we can determine the value of thermo-dynamic force for numerical comparisons later. For
this problem, the strain ®eld can be written as:

eee � bW1 �25�
where b is the linear coe�cient of thermal expansion and 1 is the second-order identity tensor.

Firstly, we evaluate the components of a tensor F � E0:eee, in terms of the initial bulk modulus, K0,
giving:

F11 � F22 � F33 � 3K0bW

F12 � F21 � F23 � F32 � F13 � F31 � 0 �26�
We then ®nd eee:E0:eee�eee:F to be:

eee:E0:eee � eee:F � 9K0b
2W2 �27�

and the product Wm:eee to be:

Wm:eee � W3K0b1:1bW � 9K0b
2W2 �28�

Substituting Eqs. (27) and (28) into Eq. (23) gives the thermodynamic force as:

A � ÿ9
2
K0b

2W2R0 �29�

and so the dissipation inequality is violated.

3.2. Numerical simulation of the heating process

The next stage is to consider the variation of the temperature pro®le that exists during the heating of
a specimen. The example shown in Fig. 1 was modelled numerically using the thermo-damage model

Fig. 1. Numerical heating problem.
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described in Section 2 and the Helmholtz free energy function given by Eq. (5). The ®nite element
integration was performed using a fractional step method described completely in Stabler and Baker
(2000).

Fig. 1 shows that one face of the specimen is heated with a constant heat ¯ux of 500 W/m2. All other
faces are insulated. The heat ¯ux is applied for a period of 4000 s and then removed. The analysis
continues for a further 6000 s to allow the temperature pro®le to equalise throughout. The thermal time
step used was 5 s, and there were 200 mechanical time steps per thermal time step. For the purpose of
this demonstration, thermal damage was allowed to proceed even if the calculated mechanical
dissipation was negative.

Fig. 2 gives the variation of temperature, thermodynamic force and accumulated energy dissipated
against time for each of the 20 Gauss points. For the purpose of this demonstration, we plot the
accumulated energy dissipated at the individual Gauss points, which is just the integral over time of the
mechanical dissipation. For this example, where there is no mechanical (stress based) damage, we have:

D � ÿ
�
t

@c
@g

_g dt �30�

which is calculated using standard ®nite element quadrature rules. We remark again that the non-
negativity of fcon is a condition which is automatically satis®ed by the use of Fourier's Law of heat
conduction, and its integral does not represent a physical quantity. Thus, the volume integral of D
represents the total amount of mechanical energy converted to heat.

It is clear from Fig. 1 that all Gauss points experience negative dissipation; moreover, the numerical
value of the thermodynamic force at steady state conditions corresponds exactly to the value given by
Eq. (29).

3.3. Generalised isotropic damage

The thermo-damage model presented in Section 2 assumes that both mechanical and thermal damage
a�ect the Young's modulus and bulk modulus equally. Consequently, Poisson's ratio is not a�ected by
damage. The more general form of an isotropic damage model allows the Young's modulus and the
bulk modulus to be a�ected by damage di�erently. The following question must be asked: Is it possible
to formulate an isotropic thermo-damage model with constant speci®c heat that satis®es the second law
of thermodynamics?

Suppose that an isotropic thermo-damage model can be formulated with two damage parameters
aaa � �x, y�, where x is the thermo-damage parameter a�ecting the Young's modulus and y is the thermo-
damage parameter a�ecting the bulk modulus. Suppose also that the parameters x, y include the e�ect
of both mechanical and thermal damage. For a damage model of this form, the Helmholtz free energy
function can be written as:

c � 1

2
eee:E�x, y�:eeeÿ Wm�y�:eeeÿ 1

2
c
W2

y0
�31�

The reduced Young's modulus and bulk modulus are given by the following equations:

E � �1ÿ x�E0 and K � �1ÿ y�K0 �32�

In the damaged state, Poisson's ratio is given by
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Fig. 2. Results for the original quadratic free energy function.
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n � 1

2
ÿ �1ÿ x�
�1ÿ y�

E0

6K0
�33�

By considering allowable values of Poisson's ratio, it is possible to map a region in the x, y space
de®ning allowable values of x and y damage. This region is shown in Fig. 3 and is described by the
relation:

for y � f�x� 0RxR1 0RyR1ÿ �1ÿ x� E0

3K0
�34�

The strain energy component 1
2eee:E:eee of Eq. (31) can be written as:

1

2
eee:E:eee � 1

2
C1

�
e211 � e222 � e233

�� C2�e11e22 � e22e33 � e33e11 � � C3

�
e212 � e223 � e213

� �35�

and the thermo-elastic coupling Wm:eee is given by:

Wm:eee � 3Wb�1ÿ y�K0�e11 � e22 � e33 � �36�

In Eq. (35), the constitutive coe�cients, obtained from Lame's constants, are:

C1 � l� 2m � 3�1ÿ y�K0

�
3�1ÿ y�K0 � �1ÿ x�E0

��
9�1ÿ y�K0 ÿ �1ÿ x�E0

�

C2 � l � 3�1ÿ y�K0

�
3�1ÿ y�K0 ÿ �1ÿ x�E0

��
9�1ÿ y�K0 ÿ �1ÿ x�E0

�

Fig. 3. Change of Poisson's ratio with damage.
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C3 � 2m � 6�1ÿ y�K0�1ÿ x�E0�
9�1ÿ y�K0 ÿ �1ÿ x�E0

� �37�

The thermodynamic forces are evaluated as:

Ax � ÿ@c
@x
� ÿ1

2

@C1

@x

�
e211 � e222 � e233

�ÿ @C2

@x
�e11e22 � e22e33 � e33e11 � ÿ @C3

@x

�
e212 � e223 � e213

� �38�

and

Ay � ÿ@c
@y
� ÿ1

2

@C1

@y

�
e 211 � e222 � e233

�ÿ @C2

@y
�e11e22 � e22e33 � e33e11 � ÿ @C3

@y

�
e212 � e223 � e213

�
ÿ 3WbK0�e11 � e22 � e33 � �39�

where

@C1

@x
� ÿ36K

2E0

�9Kÿ E�2
@C1

@y
� ÿ3K0�27K 2 ÿ 6KEÿ E 2�

�9Kÿ E�2

@C2

@x
� 18K 2E0

�9Kÿ E�2
@C2

@y
� ÿ3K0

ÿ
27K 2 ÿ 6KE� E 2

�
�9Kÿ E�2

@C3

@x
� ÿ54K

2E0

�9Kÿ E�2
@C3

@y
� 6E 2K0

�9Kÿ E�2
�40�

The mechanical dissipation is de®ned as

fmech � Ax _x� Ay _y �41�
and using Eqs. (38)±(40), the dissipation equation can be written as:

fmech �
��

18K 2E0 _x� 3K0

2
�27K 2 ÿ 6KEÿ E 2� _y

��
e211 � e222 � e233

�ÿ �18K 2E0 _xÿ 3K0

2

ÿ
54K 2

ÿ 12KE� 2E 2
�

_y

�
�e11e22 � e22e33 � e33e11 � �

�
54K 2E0 _xÿ 6E 2K0 _y

��
e212 � e223 � e213

��
=�9Kÿ E�2ÿ3WbK0�e11 � e22 � e33 � _y

�42�

Consider again the simple model problem described in Section 3.1 where the temperature of a specimen
is raised uniformly throughout the material by a temperature W: The components of the strain tensor are

e11 � e22 � e33 � bW and e12 � e23 � e31 � 0 �43�
Using these strains, Eq. (42) reduces to

fmech � ÿ
9

2
K0b

2W2 _y �44�

The above equation is true regardless of the relationship between x and y damage. Therefore, a two
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parameter isotropic damage model with constant speci®c heat also violates the second law of
thermodynamics.

4. Modi®cation to the free energy function solution

In this section, we propose a modi®cation of the quadratic form of the free energy function and
demonstrate that the second law of thermodynamics is now satis®ed. In addition, we consider the
logarithmic form of the free energy function as this is a more appropriate form for the case of large
temperature changes. We conclude this section by considering some other loading cases and demonstrate
that they also satisfy the second law of thermodynamics.

4.1. Variable speci®c heat coe�cient

Clearly, the free energy function must be modi®ed to avoid violation of the dissipation inequality.
Our approach is to allow the speci®c heat capacity to vary with damage, not temperature since
otherwise the concept in Eq. (2) would no longer be valid. This results in the following general form for
the free energy function:

c � 1

2
eee:E�g, d�:eeeÿ Wm�g, d�:eeeÿ 1

2
c�g, d�W

2

y0
�45�

In the above equation, the speci®c heat is a function of damage and should re¯ect the observed
experimental behaviour. Furthermore, the relationship must obey the inequalities

@c�g, d�
@g

> 0 and
@c�g, d�
@d

> 0 �46�

so that it overcomes the negative term in the dissipation inequality. This allows the formulation to
satisfy the second law of thermodynamics. The exact relationship between speci®c heat and damage
depends on the formulation of the thermo-damage model. For the thermo-damage model presented in
Section 2, the following exponential form can be used:

c�g, d� �
�
x1 � x2

�x3 ÿ gÿ d� dg�
�
c0 �47�

4.2. Thermal damage dependence

To evaluate the damage dependence of the speci®c heat, we ®rst consider the unrestrained heating
problem investigated in Section 3. In this problem, there is no mechanical damage and so the speci®c
heat function becomes:

c�g� �
�
x1 � x2

�x3 ÿ g�
�
c0: �48�

Substituting values of x1 � 0:5707, x2 � 0:5623 and x3 � 1:31 into the above equation results in a linear
relationship between speci®c heat and temperature. This relationship is shown in Fig. 3. It should be
said that the data for variation in speci®c heat is inconclusive (see Schneider, 1988), but a linear
relationship between speci®c heat and temperature is quite justi®able.
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4.2.1. Positive dissipation: the steady state case
Consider the steady state problem presented in Section 3.1. In this problem, the temperature

throughout the sample was raised uniformly by an amount W: The thermodynamic force Ag associated
with the modi®ed free energy function is:

Ag � ÿ@c
@g
� 1

2

�
x2c0

�x3 ÿ g�2y0 ÿ 9b2k0

�
W2 �49�

If we consider properties corresponding to normal concrete, which are listed in Table 2, and substitute
these values into Eq. (49), then conservatively setting g � 0 yields the following equation for the
thermodynamic force:

A�g�rA�0� � 1

2
�2265ÿ 0:0000216�W2r0 �50�

Note that not only is the thermodynamic force positive but also the positive term, which results from
the variable speci®c heat, is much greater than the magnitude of the negative term. Therefore, it would
be possible to adjust the model so that damage has a much smaller e�ect on the speci®c heat than that
shown in Fig. 4 and still satisfy the second law of thermodynamics.

4.2.2. Numerical simulation of the heating process
We now consider the variation of the temperature pro®le that exists during the heating process. This

is done by analysing the numerical example described in Section 3.2 using the modi®ed Helmholtz free
energy function. The results are presented in Figs. 5 and 6.

We note that dissipation is always positive as required. It appears from Fig. 6 that there is only a
slight variation in temperature pro®le between the original and modi®ed free energy functions. This is
simply because we have small temperatures, and so the thermal damage is small and, hence, the change
in speci®c heat is small. We consider elevated temperatures in the next section, where we note a

Fig. 4. Variation in speci®c heat.
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Fig. 5. Results for the modi®ed quadratic free energy function.
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considerable di�erence. Moreover, it is important to adopt a more appropriate prediction of dissipation,
particularly in problems where the dissipation quantity may be reintroduced as heat input to the thermal
equilibrium equations.

4.3. Alternative form at elevated temperatures

The de®nition of speci®c heat in Eq. (2) and the associated quadratic form of the free energy equation
corresponds to the assumption that yZ1y0Z in the formulation of the thermal equilibrium equation
(Armero and Simo, 1992). This assumption is reasonable for small temperature increments, such as
those resulting from mechanical e�ects, but is not applicable to transient elevated temperatures.

For higher temperatures, the speci®c heat should be written as:

c � ÿy@
2c

@y2
�51�

After double integration, the thermal term in the free energy function takes a logarithmic form (Simo
and Miehe, 1992). This too would generate negative dissipation for the examples presented in Section 3.
Therefore, we retain the damage dependent speci®c heat function c � c�g, d � and obtain the following
equation for the free energy function:

c � 1

2
eee:E�d, g�:eeeÿ �yÿ y0�m�d, g�:eee� c�g, d�

�
yÿ y0 ÿ y ln

�
y
y0

��
�52�

From this, the thermodynamic properties are:

Fig. 6. Comparison of some Gauss point temperatures for the original and modi®ed quadratic free energy functions.
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As a second example, we repeat the heating problem described in Fig. 1 but this time raising the
temperatures to 02508C. This was done by increasing the heat ¯ux to 10 kW/m2. All the other
parameters remain unchanged. Fig. 7 shows a comparison of temperature pro®le, entropy and
accumulated energy dissipated against time for both free energy forms. Importantly, dissipation is
always positive as required. Furthermore, the temperature pro®le over time is virtually identical for both
forms of thermal energy, and one might be tempted to believe that the thermal forms are alternatives,
since the heat conduction problem seems una�ected. However, both entropy and dissipation di�er
signi®cantly, although these are rarely examined. The more accurate logarithmic form exhibits lower
entropy and conversion of energy to heat by about 25% at the heated end in the steady state condition.
We repeat that this di�erence is very relevant in cases where dissipation is reintroduced as heat input
into the thermal equilibrium phase.

For the same heating problem, we show the temperature pro®le using the quadratic form with both
the constant speci®c heat (which gives negative dissipation) and the modi®ed damage-dependent speci®c
heat (which behaves correctly) in Fig. 8; recall that the temperature pro®le is the same for the
logarithmic form. Evidently, there is now a signi®cant in¯uence on the temperature pro®le as well as on
dissipation.

4.4. Other loading situations

To conclude this investigation, we comment on the e�ect of combined mechanical and thermal
damage. The expression for dissipation in Eq. (6) is expanded with Eqs. (55) and (56) to give:

fmech �
�
eee:

�
1

2
E0:eeeÿ Wm0

���
�1ÿ g� _d� �1ÿ d� _g

�
�
�
@c

@d
_d� @c

@g
_g

��
y ln

�
y
y0

�
ÿ W

�
�57�

As previously discussed, the ®rst term of Eq. (57) can be negative. Therefore, we require the second
term to be non-negative and large enough to overcome any negative quantities generated in the ®rst
term.

Firstly, consider the case where there is only mechanical loading at room temperature (i.e.
W10; _g � 0). It can be shown that the dissipation condition is automatically satis®ed. This is because the
temperature change due to structural heating and mechanical dissipation is very small and all the terms
in Eq. (57) are positive.

To assess the combined damage e�ects, we construct a model problem quite like the physical
experiment of Anderberg and Thelandersson (1976). Initially, a specimen is heated to a high temperature
without load �W > 0, g > 0 and _g > 0; but d � 0� and then the temperature is held constant while load is

J. Stabler, G. Baker / International Journal of Solids and Structures 37 (2000) 4691±47134706



Fig. 7. Results for the modi®ed quadratic and logarithmic free energy functions.
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applied �g > 0 but _g � 0; _d > 0, d > 0). The ®rst phase of this experiment is covered in the discussion of
Sections 4.2.1 and 4.2.2. For the second phase, the thermodynamic force reduces to

Ad �
�
eee:

�
1

2
E0:eeeÿ Wm0

��
�1ÿ g� � @c

@d

�
y ln

�
y
y0

�
ÿ W

�
: �58�

As discussed in Section 3, the ®rst term in the square brackets can easily be negative and, therefore, the
second term must be positive; and, moreover, the magnitude of the second term must be much greater
than the magnitude of the ®rst term. If we consider the thermo-damage model presented in Section 2
and the de®nition of speci®c heat given by Eq. (47), the thermodynamic force becomes

Ad �
"
eee:
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1

2
E0:eeeÿ Wm0
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y ln
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�#
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where

z � g� dÿ gd such that z 2 �0, 1�: �60�

If one substitutes representative values into the above equation, it can be seen that the magnitude of the
second term will be several orders of magnitude greater than the magnitude of the ®rst term; see, for
example, Eq. (50). Thus, the second law of thermodynamics will be satis®ed. Again we point out that
the in¯uence that the damage parameters have on speci®c heat does not need to be as great as that used
in this paper in order to obtain positive dissipation. The main point is that the damage parameters,
when used in a thermo-mechanical setting, must have some in¯uence on the speci®c heat such that the
model satis®es the second law of thermodynamics. The nature of the relationship between the speci®c
heat and the damage parameters depends on the speci®c details of the damage model used.

Fig. 8. Comparison of some Gauss point temperatures for the original and modi®ed quadratic free energy functions.

J. Stabler, G. Baker / International Journal of Solids and Structures 37 (2000) 4691±47134708



5. Concluding remarks

This paper concerns the form of the free energy function in coupled thermo-mechanical problems with
isotropic damage, where both mechanical and thermal damage occurs, and when the material is exposed
to elevated temperatures. It was shown that with the normal assumption of a constant speci®c heat
coe�cient, mechanical dissipation is negative and so the second law of thermodynamics is violated. This
was con®rmed by a numerical example in Section 3.2. In fact, the problem of negative dissipation is true
for all isotropic damage models, even those that allow independent damage on the Young's modulus
and the bulk modulus.

The approach used to rectify this violation is to make speci®c heat dependent on damage, and under
these conditions we show positive dissipation for a range of problems; for the case of concrete, at least,
there is material evidence supporting this model. At low temperatures, it is not clear how signi®cant this
problem is for actual computations. Nevertheless, we show an error of at least 15% in the temperature
pro®le in simple heat conduction along a bar, even without the presence of mechanical damage.

For elevated temperatures, we use the logarithmic form of thermal energy, again showing positive
dissipation. A comparison between the logarithmic and quadratic forms reveals that temperature pro®le
may not be adversely a�ected, thus giving a false sense of accuracy since dissipation can be in error by
25%. Since this represents energy transformation to heat, the correct form is vital when heat is
reintroduced into the calculations. Finally, a more general example where there is a heating phase
followed by a loading phase was considered. It was shown that for this problem, it is possible for the
thermo-damage model to satisfy the second law of thermodynamics.

Appendix A. Thermal equilibrium equation

In this appendix, we present algorithmic details for the evolution equations. Here, we wish to record
the e�ects of introducing a damage dependent speci®c heat into the ®nite element discrete forms. For
thermal evolution, we naturally begin with the local energy balance equation:

y_Z � ÿdiv q� r� fmech �A1�
where q is again the heat ¯ux, and r is a heat source. Our main interest is the logarithmic form, since it
is more widely applicable, yet it is more complicated in the discrete form. That is, the logarithmic form
binds discrete variables at di�erent time steps, e.g. yn�1 and yn, whereas with the quadratic form, the
variables separate and lead to a more straightforward time marching scheme.

Applying the chain rule to Eq. (54), we can express the left-hand side of Eq. (A1) as:

y_Z � y�1ÿ d��1ÿ g�m0:Çeeeÿ
�
y�1ÿ d�m0:eee

�
_gÿ �y�1ÿ g�m0:eee
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_d� y
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y
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�
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�
x1

� x2

�x3 ÿ z�
�
c0 _y �A2�

where

z � g� dÿ gd and _z � �1ÿ d� _g� �1ÿ g� _d �A3�
Substituting Eq. (A2) into Eq. (A1) and discretising in time gives
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Writing this equation in the weak form by premultiplying by a smooth continuous scalar function a,

integrating over the volume and applying the divergence theorem gives:
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Using Fourier's Law of heat conduction, the above equation can be written as:
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which can be implemented into a ®nite element code.
For either form of the free energy function, the discretised weak form of the momentum balance

equation is given by:
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A number of integration schemes might be proposed for the coupled equations (A6) and (A7). In a
simultaneous (load and heat) solution, or an isothermal phase of a fractional step algorithm (Stabler
and Baker, 2000), Eq. (A7) can be used directly. However, for an isentropic phase, it is necessary to
apply the isentropic condition between sub time steps j and j� 1: Recall that entropy is calculated from:
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and so an isentropic sub time step would require
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Rearranging

ln

�
yj�1
y0

�
� 1

cj�1
�mj:eeej � ÿ 1

cj�1
�mj�1:eeej�1 � � cj

cj�1
ln

�
yj
y0

�
�A10�

If we allow speci®c heat to evolve through the thermal phase only then cj�1 � cj � cn, i.e. speci®c heat is
constant during the isentropic phase. Taking the exponential of both sides of Eq. (A10) gives:
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which we could then write as:

Wj�1 � yj exp
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Unfortunately, if we substitute this equation into Eq. (A7), we cannot transfer eeej�1 to the left-hand side
of the equation. Therefore, the isentropic phase would require an iterative solution and as a result it will
be computationally expensive.

To overcome this di�culty, it is necessary to realise that during the adiabatic phase the temperature
change in the structure is quite small and so the following approximation can be established. Firstly, we
®nd some constant an such that:
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And so at the sub time step j� 1, the following approximation can be made:
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And so the adiabatic condition can be approximated by:
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and, hence, the relative temperature can be written as:
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Substituting this into Eq. (A7) gives:
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